
DIFFERENTIAL EQUATIONS 

IN THE AP* CALCULUS EXAM 

Victor Liu 

Olympia Press San Francisco California 

i 




c Copyright 2003 by Victor Liu 

All rights reserved. No part of this book may 
be reproduced in any form, stored in a retrieval 
system, or transcribed in any form or by any 
means, electronic, mechanical, photocopying, 
recording, or otherwise, without the prior written 
permission of the author. 

All inquiries should be addressed to: 
Olympia Press 
950 Clement Street 
San Francisco, CA 94118 

International Standard Book No. 0-9727892-1-9 

ii 



Contents 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 

Chapter 1 
Separable Differential Equations . . . . . . . . . . . . . . . . . . . . 1 

Chapter 2 
Reduction to Separable Equations* . . . . . . . . . . . . . . . . . . . 7 

Chapter 3 
Exponential Growth and Decay . . . . . . . . . . . . . . . . . . . . . 12 

Chapter 4 
Simple Inhibited Growth . . . . . . . . . . . . . . . . . . . . . . . . 17 

Chapter 5 
Logistic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Chapter 6 
Implicit Equation Forms* . . . . . . . . . . . . . . . . . . . . . . . . 28 

Chapter 7 
Analysis of Logistic Equation* . . . . . . . . . . . . . . . . . . . . . 36 

Chapter 8 
The Hyperbolic Forms* . . . . . . . . . . . . . . . . . . . . . . . . . 42 

Chapter 9 
Slope Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

Chapter 10 
Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

Appendix A 
Derivation of the Logistic Equation . . . . . . . . . . . . . . . . . . . 53 

Free Response Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

Answers to Practice Problems . . . . . . . . . . . . . . . . . . . . . . . 55 

Answers to Free Response Questions . . . . . . . . . . . . . . . . . . . 57 

� These chapters cover material beyond the scope of the AP exam. 

iii 



Preface 
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and their applications, Euler’s method for solving differential equations numerically, and slope 
felds for visualizing differential equations. Among these topics, the logistic equation, Euler’s 
method and slope felds are only covered in the AP Calculus BC exam, but slope felds will be 
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Chapter 1 

Separable Differential Equations 

Purpose: To learn how to solve separable differential equations. This is required by the AP 
Calculus AB/BC exams. 

A differential equation is an equation that involves derivatives of a function. A solution to a 
differential equation is any function that can satisfy it. For example, the solution to the differen-
tial equation dy + 4y = 0 is y = Ce−4x because if the solution is substituted into the original 

dx 

equation, the result is a true statement: 

d 
Ce−4x + 4Ce−4x = 0 

dx 

−4Ce−4x + 4Ce−4x = 0 

0 = 0 

Notice that there is an arbitrary constant C in the solution. This is a result of applying indefnite 
integration in the process of fnding the solution. Since C can be any constant in the example, 
this form is called the general solution of the differential equation. If some initial condition 
is given, such as y(1) = 2 in the above example, then a unique value of the constant C can be 
determined by substituting the initial condition into the general solution: 

2 = Ce−4(1) 

4C = 2e 

In this case the differential equation has a particular solution: 

4 −4x 4(1−x)y = Ce−4x = 2e · e = 2e 

A separable differential equation is a differential equation that can be written in the fol-
lowing form: 

dy f (x) 
= or f (x) dx = g (y) dy

dx g (y) 

(Separable differential equation forms) 

In the above form with variables x and y separated on each side of the equation, the solution to 
the differential equation can be found by integrating both sides of the equation: Z Z 

g (y) dy = f (x) dx 

Sometimes a differential equation is not directly separable, but can be converted to a separable 
equation by some mathematical manipulations. We will discuss this case in the next chapter. 

1 



Example 1.1 
Find the general solution of the differential equation y0 − y sin x = 0. 

Solution: 
The above differential equation can be written as: 

dy 
= y sin x 

dx 

dy 
= sin xdx 

y 

Now by integrating both sides we have a general solution: Z Z 
dy 

= sin xdx 
y 

ln |y| = − cos x + C 

− cos x C )|y| = C1e (C1 = e 

To verify the above solution, substitute y = ±C1e
− cos x into the original equation. 

− cos xIf y = +C1e , 

y 0 − y sin x = C1e 
− cos x sin x − C1e 

− cos x sin x = 0 

− cos xIf y = −C1e , 

y 0 − y sin x = −C1e 
− cos x sin x + C1e 

− cos x sin x = 0 

Since both substitutions resulted in true statements, |y| = C1e
− cos x is the general solution. 

I TIP 
While changing the constant of integration for convenience, use a different expression, for ex-
ample, use C1 instead of C in the above case, so that their meanings are consistent. 

Example 1.2 p p
Find the particular solution to the differential equation dy − y = x y, if y = 9 when x = 4.

dx 

Solution: 
Separate the variables frst: 

dy p p
= x y + y

dx 

dy p
= (x + 1) y

dx 

dy 
p = (x + 1) dx 

y 

2 



1 
2 

1 
2 

Z Z 
y − dy = (x + 1) dx 

1 22y = x + x + C 
2 � �2

1 1 
y = x 2 + x + C1 (C1 = 1

2 C)
4 2 

Now substituting the initial condition: � �2
1 1 

9 = (4)2 + (4) + C1
4 2 

±3 = 4 + 2 + C1 

C1 = −6 ± 3 = −9, −3 

So the particular solutions to the differential equation are: � �2 � �2
1 1 1 1 

y = x 2 + x − 9 and y = x 2 + x − 3 
4 2 4 2 � �2

Verify the solutions by substituting them into the original equation. If y = 1
4 x

2 + 1
2 x − 9 , � �� � � � 

dy 1 1 1 1 1 1 p
= 2 x 2 + x − 9 x + = x 2 + x − 9 (x + 1) = y (x + 1) 

dx 4 2 2 2 4 2 

When x = 4, � �2
1 1 

y = (4)2 + (4) − 9 = (−3)2 = 9 
4 2 � �22 +The other solution y = 1

4 x 1
2 x − 3 can be verifed similarly. 

I NOTE 
Sometimes it is possible to obtain more than one particular solution if square roots are involved. 
If the solutions are applied to a real world situation, be sure to check whether both solutions 
make sense. 

Example 1.3 
Find the particular solution to the differential equation dx = r (a − x)2 , with the initial condition 

dt 

x (0) = x0. 

Solution: 
Separating variables x and t, and integrating both sides of the equation, we have Z Z 

dx 
= rdt 

(a − x)2 

3 
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Letting u = a − x, then dx = −du, substitute these into the above equation, Z Z 
−du 

= rdt 
u2 

1 
= rt + C 

u 

1 
= rt + C 

a − x 

Apply the initial condition x (0) = x0 to the above equation to get C = 
a− 

1 
x0 

. So the particular 
solution can be obtained: 

1 1 r (a − x0) t + 1 
= rt + = 

a − x a − x0 a − x0 

a − x0 
a − x = 

1 + r (a − x0) t 

a − x0 
x = a − 

1 + r (a − x0) t 

Example 1.4 
Find the particular solution to the differential equation dy = (a − y) (b − y), b > a > 0, y =6 a,

dx 

y 6= b, with the initial condition y (0) = y0. 

Solution: 
Separating the variables, we have dy = dx. Performing a partial fraction decomposition, 

(a−y)(b−y) 
we obtain 

1 1 1 
= + 

(a − y) (b − y) (b − a) (a − y) (a − b) (b − y) 

So the original equation becomes Z Z Z 
dy dy

+ = dx 
(b − a) (a − y) (a − b) (b − y) 

1 1 
(− ln |a − y|) + (− ln |b − y|) = x + C 

b − a a − b 
ln |b − y| − ln |a − y| = (b − a) x + C1 (C1 = (b − a) C) 

b − y
ln = (b − a) x + C1 

a − y 
If a < y < b, 

(b−a)xb − y = (y − a) C2e (C2 = eC1 ) 
(b−a)x (b−a)x y + yC2e = b + aC2e 
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(b−a)xb + aC2e 
y = 

1 + C2e(b−a)x � � 
(b−a)x(b − a) + a + aC2e 

y = 
(b−a)x1 + C2e 

b − a 
y = a + 

(b−a)x1 + C2e 

Apply the initial condition y (0) = y0, 

b − a 
y0 = a + 

1 + C2 

b − a 
1 + C2 = 

y0 − a 

b − a − y0 + a b − y0
C2 = 

y0 − a 
= 

y0 − a 

Substitute C2 back in the y expression, 

b − a� �y = a + 
b−y0 e(b−a)x1 + 
y0−a 

In the case of y < a or y > b, 
(b−a)xb − y = (a − y) C2e 

(b−a)x (b−a)x y − yC2e = b − aC2e 
(b−a)xb − aC2e 

y = 
1 − C2e(b−a)x � � 

(b−a)x(b − a) + a − aC2e 
y = 

(b−a)x1 − C2e 

b − a 
y = a + 

(b−a)x1 − C2e 

Apply the initial condition again, 
b − a 

y0 = a + 
1 − C2 

b − a 
1 − C2 = 

y0 − a 

y0 − a − b + a y0 − b 
C2 = = 

y0 − a y0 − a 

Substitute C2 in the y expression, 

b − a b − a 
y = a + � � = a + � � 

y0−b e(b−a)x b−y0 e(b−a)x1 − 1 + 
y0−a y0−a 
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We have obtained the same specifc solution in both cases. To verify the solution, substitute 
y = a + � 

b−y 
b 
0 

−�a into the original equation dy = (a − y) (b − y): 
(b−a)x dx1+ e 

y0−a h� � i � � 
b−y0 (b−a)x (b − a) 2 b−y0 (b−a)x− (b − a) e − (b − a) edy y0−a y0−a 

= h � � i2 = h � � i2dx b−y0 b−y0e(b−a)x e(b−a)x1 + 1 + 
y0−a y0−a 2 3 � � 

2 b−y0 (b−a)x− (b − a) eb − a b − a y0−a 
(a − y) (b − y) = − � � 4b − a − � � 5 = h � � i2b−y0 (b−a)x b−y0 (b−a)x b−y01 + e 1 + e 1 + e(b−a)x 

y0−a y0−a y0−a 

I NOTE 

When removing the absolute value sign in an expression, such as 
a
b−
− 

y
y 

in the above example, 

it is necessary to discuss two cases (unless there is only one possibility), one is to assume its 
argument is positive and the other is negative. 

Practice problem set 1 
Solve the following separable differential equations: 

1. 2xydx − (1 + x2) dy = 0 
p dy2. xy

dx 
= 3 

3. x2 (y − 1) dx − y2 (x + 1) dy = 0 

4. dx + (1 − x2) cot ydy = 0 

5. 3 
t 
dt − y− 

y 
2 dy = 0 

6. cos xdx + 2ydy = 0; y (0) = 1 

0 xy−2y7. y = 
y2+1 ; y (2) = 1 

x8. xe 
2 
dx + (y3 − 1) dy = 0; y (0) = 2 

dy 3x−19. = ; y (0) = 0
dx (x−3)(x+1) 

dy10. 
dx 

= y (a − y); a > 0, y 6= a, y 6= 0 
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Chapter 2 

Reduction to Separable Equations* 

Purpose: To learn how to convert several types of differential equations into separable equa-
tions and solve them. The material in this chapter is not covered on the AP Calculus exam. 

Separation of variables is one of the basic techniques for solving differential equations. In this 
chapter we are going to learn several types of differential equations that are not directly separable, 
but can be reduced to separable equations by simple mathematical manipulations. Although the 
content of this chapter is not a requirement of the AP Calculus exam, you are encouraged to read 
this chapter to enhance your skills of solving differential equations. 

Homogeneous Equations 

Homogeneous differential equations in the form of dy = f (x, y) have the property that f (tx, ty) = 
dx 

x+y x+y tx+tyf (x, y). For example, in the equation dy = , f (x, y) = . Since f (tx, ty) = = 
dx 2y 2y 2ty 

f (x, y), the equation is homogeneous. A homogeneous equation can be transformed into a sep-
arable equation by making the substitution: y = vx, where v is a function of x. Thus, 

dy dv 
= x + v 

dx dx 

I TIP 
A simple way to check whether an equation is homogeneous is to make sure that all the terms in 
f (x, y) have the same degree. 

Example 2.1 
x2+ySolve the differential equation dy = 

2 
.

dx 2xy 

Solution: 
t2x2+t2ySince f (tx, ty) = 

2 
= f (x, y), the equation is homogeneous (notice that all the terms

2txty 
y dvin x2+y2 

have degree 2). Make the substitution y = vx then v = , and dy = v + x . So the 
2xy x dx dx 

original equation becomes: 
2 + x2 2dv x v 

v + x = 
2dx 2x v 

dv 1 + v2 1 − v2 

x = − v = 
dx 2v 2v 

The above equation can be solved by separating the variables v and x and integrating both sides: Z Z 
2vdv dx 

= 
1 − v2 x 

− ln 1 − v 2 = ln |x| + C 

7 



�� �� C1
1 − v 2 = (C1 = e−C )

|x| 
To get rid of the absolute value signs on both sides of the equation, we need to assume there are 
two cases: 1 − v2 = C

x 
1 and 1 − v2 = −C

x 
1 , therefore 

2 C1
1 − v = ± 

x 

Substitute v = 
x
y into the above equation: 

y2 C1
1 − = ± 

x2 x 

y 2 = x 2 � C1x 

To verify the solution, differentiate both sides of it with respect to x: 

dy
2y = 2x � C1

dx 

2x�C1 +y x +x2�C1x 2x�C1 dyTherefore dy = and x
2 2 

= 
2 

= = 
dx 2y 2xy 2xy 2y dx 

Linear Fractional Equations 
a1x+b1x+c1A linear fractional equation has the form dy = , where a1, b1, a2, and b2 are non-

dx a2x+b2x+c2 

zero constants. A special case of the equation is when a1 = b1 = k. Under this condition,
a2 b2 

linear fractional equations can be reduced to separable equations by making the substitution 
a1 b1 1 v v = a1x + b2y. Since a2 = and b2 = , we have a2x + b2x = (a1x + b1x) = , and also � k � k k k 

dv dy dy 1 dv 
dx 

= a1 + b1 or 
dx 

= − a1 .
dx b1 dx 

Example 2.2 
2x+3y+5Solve the differential equation dy = .

dx 4x+6y−3 

Solution: � �
dy 1 dvMake the substitution v = 2x + 3y, then dv = 2 + 3 dy , or = − 2 . Substitute these into 

dx dx dx 3 dx 

the original equation: � � 
1 dv v + 5 − 2 = 
3 dx 2v − 3 

dv 3 (v + 5) 7v + 9 
= + 2 = 

dx 2v − 3 2v − 3 Z Z 
2v − 3 

dv = dx 
7v + 9 
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7(2v−3) 14v−21+(18−18) (14v+18)−(21+18) 2 39Since 2v−3 = = = = − ,
7v+9 7(7v+9) 7(7v+9) 7(7v+9) 7 7(7v+9) Z � � Z 

2 39 − dv = dx 
7 7 (7v + 9) 

2 39 
v − ln |7v + 9| = x + C 

7 49 

Substitute v = 2x + 3y back into the above equation to get an implicit solution of y: 

14 (2x + 3y) − 39 ln |7 (2x + 3y) + 9| = 49x + C1 (C1 = 49C) 

I TIP 
Sometimes it is unnecessary or even impossible to fnd an explicit expression for the solution. 
An implicit solution is acceptable as long as it is reasonably simplifed. 

Linear First-Order Differential Equations 

A frst-order linear differential equation can be generally expressed as dy + p (x) y = q (x). This
dx 

equation is not directly separable, but can be converted into a separable equation by multiplying 
both sides by an integrating factor I (x). Then the equation becomes 

I (x) y 0 + p (x) I (x) y = q (x) I (x) 

To fnd I (x), frst notice that 
dx
d (I (x) y) = I 0 (x) y + I (x) y0 , which resembles the left side of 

the previous equation. Let 

I 0 (x) y + I (x) y 0 = I (x) y 0 + p (x) I (x) y 

I 0 (x) y = p (x) I (x) y 

d 
I (x) = p (x) I (x)

dx 

d (I (x)) 
= p (x) dx 

I (x) 

Integrating both sides, Z 
ln |I (x)| = p (x) dx 

Since I (x) is used as an integrating factor, there is no need to add a constant C here. 
R 

p(x)dxI (x) = e 

So the original equation with the integrating factor becomes 
R R R 

0 p(x)dx p(x)dx p(x)dx y e + p (x) ye = q (x) e 
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or 
d � R � R 

p(x)dx p(x)dx ye = q (x) e 
dx 

which can be separated and solved analytically to obtain �Z �R R 
− p(x)dx p(x)dxdx + Cy = e q (x) e 

I NOTE 
The purpose of multiplying the integrating factor I (x) is to make the left side of the equation a 
derivative with respect to x. Although it is generally quite diffcult or even impossible to fnd an 
integration factor for a differential equation, you do not have to struggle every time with a linear 
frst-order differential equation; you can directly apply the general solution formula to solve it. 

Example 2.3 
Solve the differential equation dy + x2y = x2 

dx 

Solution: 
2 

R 
x2dx 

3 

3In the above equation, p (x) = q (x) = x , and I (x) = e = e 
x 

. So the solution can be 
directly calculated as �Z � 

3 3 
− x x2

3 3y = e x e dx + C �Z � 
3 

− x 3x3y = e e udu + C (u = 
3 and du = x2dx) 

3 � 3 � 3 
− x x 

y = e e + C = 1 + Ce− 
x 

3 3 3 

Example 2.4 
Solve the differential equation dy + 2y cot x + sin 2x = 0.

dx 

Solution: R 
2 cot xdxIn the above equation, p (x) = 2 cotR x, q (x) = − sin 2x, and I (x) = e . Letting u = 

2 du 2 ln|sin x|
usin x and du = cos xdx, I (x) = e 
1 

= e = sin2 x. So the solution is �Z � 
1 

y = − sin 2x sin2 xdx + C 
sin2 x �Z � 
1 

y = −2 sin x cos x sin2 xdx + C 
sin2 x � Z � 

y =
1 − udu + C (u = sin2 x and du = 2 sin x cos xdx)

sin2 x 

10 



� � 
1 sin4 x sin2 x C 

y = − + C = − + 
sin2 x 2 2 sin2 x 

Practice problem set 2 
Solve the following differential equations. 

1. y2dx − x2dy = 0 
dy 2x−y2. 
dx 

= 
x 

3. (x3 + y3) dx − 3xy2dy = 0 p
4. xdy − ydx − x2 − y2dx = 0 

dy 2x+6y+35. = 
dx x+3y−9 

6. dy + 2xy = 6x
dx 

7. (x − 2) dy = y + 4 (x − 2)3 
dx 

dy8. 
dx 

+ 2xy = 2x3; y (0) = 1 

dy9. 
dx 

+ y cot x = 5ecos x; when x = ˇ 
2 , y = −4 

10. xy0 = y (1 − x tan x) + 2x2 cos x 

11 



Chapter 3 

Exponential Growth and Decay 

Purpose: To solve the differential equation for the exponential growth and decay model and to 
apply the solution. This is required by the AP Calculus AB/BC exams. 

So far we have learned how to solve separable differential equations and several other types that 
can be reduced to separable equations. In the following chapters we are going to apply our skills 
in solving some real world problems, namely, models of exponential growth and decay, simple 
inhibited growth and logistic growth. 

Exponential growth and decay can be represented by one of the basic forms of separable 
differential equations: 

dP 
= rP (3.1)

dt 

(Differential equation for exponential growth and decay) 

This equation states that variable P varies at a rate directly proportional to the value of P. In the 
equation r is the rate constant. When r > 0, the equation represents exponential growth; when 
r < 0, it represents exponential decay. 

Exponential growth and decay are most commonly used to model the change of a population, 
as the rate of population growth or decay is usually proportional to the population itself. For 
example, as a bacteria population increases, there are more individuals capable of reproduction 
so the rate of increase also increases. The decay of a radioactive substance also follows this law. 
As the amount of substance decreases, the rate of decay (the change of substance capable of 
producing radiation) also decreases. Exponential growth and decay can also be used to model an 
investment with interest compounded continuously, the processes of a solution being diluted by 
fresh water, a capacitor being discharged, and many other cases. 

Equation 3.1 can be easily solved by separating the variables: 

dP 
= rP 

dtZ Z 
dP 

= rdt 
P 

ln |P | = rt + C 

Since the population P is non-negative, 
rt+C rt P = e = C1e (C1 = eC ) 

Assuming that the initial value P0 occurs at time t = 0, then C1 = P0. So we obtain this general 
solution: 

P = P0e 
rt (3.2) 

(Exponential growth and decay solution) 

The following fgure shows some examples of the exponential growth and decay function. In the 
graph it can be seen that if r > 0, P !1 as t !1; if r < 0, then P ! 0 as t !1. 
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Figure 3.1: Examples of exponential growth and decay 

Example 3.1 
Bacteria in a culture increased from 400 to 1600 in three hours. Assuming that the rate of increase 
is directly proportional to the population, 

a) Find an appropriate equation to model the population (assuming P0 = 400 at time t = 0). 

b) Find the number of bacteria at the end of six hours (t = 6) using the equation found above. 

Solution: 
a) Apply the initial condition P0 = 400 in equation 3.2 to obtain P = 400ert . Since the 

population is 1600 in three hours, substitute P = 1600 and t = 3 in the solution equation 
to solve for er: 

3r1600 = 400e 

3r e = 4 

e r = 4 

Now substitute the value for e 

1 
3 

r back into the solution equation to get � � 
t 

P = 400 4 3 

b) Substituting t = 6 into the above equation, we have � � 
P = 400 4 

6 
3 = 400 (16) = 6400 

I TIP 
For the exponential growth/decay or other similar problems, it is often better to solve for er rather 
than r since the result can be obtained faster by using er directly. 

13 
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Figure 3.2: Graph for example 3.1 

Example 3.2 
Carbon-14 has a half life of approximately 5730 years (every 5730 years, the amount of radioac-
tive substance will be halved). It is often used in carbon dating to fnd the age of artifacts and 
fossils since the amount of carbon-14 in the atmosphere is known. Assume that a certain fossil 
has 30% as much carbon-14 as its present-day equivalent should have. Approximate the age of 
the fossil. 

Solution: 
We frst use the known condition to solve for er: 

1 5730rP0 = P0e 
2 

1 5730r = e 
2 

1 

1 5730 
� � 

r e = 
2 

Now use the percentage of radioactive material remaining to solve for t: 

t� � 
P 1 5730 

0.30 = = e rt = 
P0 2 #"� � t 

1 5730 

ln 0.30 = ln 
2 

ln 0.30 
t = 5730 ˇ 9953 years

ln 0.5 

I TIP � � t 

As in the previous example, the general solution for half life problems is P = P0 2
1 H , where 

H is the half life. 
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Figure 3.3: Graph for example 3.2 

Example 3.3 
Find the amount of money in a bank account with a 4% interest rate after 10 years if originally 
there was $5000 in it. 

Solution: 
Calculating money gained from interest is done directly with equation 3.2, where r is the interest 
rate and P0 is the principal. In this case the equation is 

0.04tP = 5000e 

Therefore the solution is 
0.04(10) ˇ $7459.12P = 5000e 

2 4 6 8 10 12
Years

2000

4000

6000

8000
Dollars

5000 �0.04 t

Figure 3.4: Graph for example 3.3 

Practice problem set 3 
Solve the following differential equations. 

1. There are 120 grams of a radioactive substance whose half-life is 74 years. Determine how 
much of the substance will remain after 50 years. 
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2. A bacteria culture containing 2,400 cells 3 hours ago has now grown to 5,200 cells. As-
suming the rate of growth is proportional to the number present, determine the time (from 
now) at which the population will reach 10,000. 

3. A colony of bacteria with originally 100 cells has now grown to 400 in 2 hours. Assuming 
the rate of growth is proportional to the present number, fnd the number of bacteria in 5 
hours from now. 

4. There were 100 grams of a radioactive substance ten years ago, now there are only 32 
grams. Find the substance’s half-life. 

5. A bank account contains $1,200 and pays an annual interest rate of 5.25% compounded 
continuously. Determine the time at which the money doubles. 

6. An object is 3400 years old, fnd the percentage of its original Carbon-14 content it should 
have now (Carbon-14 has a half-life of 5730 years). 

7. Intensity of light beam passing through an absorbing medium decreases at a rate propor-
tional to the intensity at any given depth. Suppose at the surface of the water, the intensity 
of a light bulb is 20 candelas and 14 candelas under a yard of water. Find the light intensity 
under 20 feet of water. 

8. The population of a country is growing at a rate proportional to its population. If the 
growth rate per year is 5% of the current population, in how many years will the population 
double? 

9. Suppose the prices for real estate grow exponentially. If a house was worth $100,000 fve 
years ago, and is now worth $250,000, fnd the year (from now) in which the price will 
exceed $500,000. 

10. A tank initially holds 120 gallon of a brine solution containing 5 lb of salt. At t = 0, fresh 
water is poured into the tank at the rate of 6 gal/min, while the well-stirred mixture leaves 
the tank at the same rate. Find the time required for half of the salt to leave the tank. 

11. When a capacitor is being discharged, the equation describing the charge on one plate of 
the capacitor is 

dq q
R + = 0 

dt C 
where q is the charge (C), R is the resistance of the circuit ( ), C is the capacitance of 
the capacitor (F), and t is time in seconds. If a 5 mF capacitor with an intial charge of 3 
µC is discharged through a 100 resistor, fnd the time when 90% of the charge has been 
drained. 

12. A RL circuit has a resistance of 2 , an inductance of 5 H, and an initial current of 8 A. 
Find (a) the current in the circuit at any time t and (b) its current after 10 seconds. The 
equation describing the current in the circuit is 

dI 
L + RI = 0 

dt 
where L is the inductance (H), I is the current (A), R is the resistance ( ), and t is time in 
seconds. 
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Chapter 4 

Simple Inhibited Growth 

Purpose: To solve the differential equation for the simple inhibited growth model and to apply 
the solution. This is required by the AP Calculus AB/BC exams. 

dP
In the previous chapter we saw that for the exponential growth model 

dt 
= rP , when r > 0, 

P ! 1 as t ! 1. Usually the growth of a quantity in the real world is not unlimited, so in 
many cases, the exponential growth model is unrealistic for a long period of time. Let us assume 
that a natural maximum exists such that the growth of a quantity cannot occur beyond it. We can 
modify the above equation to refect such a condition: 

dP 
= r (K − P ) (4.1)

dt 

(Differential equation for simple inhibited growth) 

This is called simple inhibited growth. From equation 4.1 we can see that the rate of growth 
is limited by a constant K, the maximum population or quantity. Sometimes K is called the 
carrying capacity or equilibrium value, which is always assumed to be positive in this book. If 
P starts less than K, the growth of P is positive (assuming r > 0) until P is equal to K, at which 
point the growth of P diminishes to 0. If P is greater than K, then the growth of P is negative, 
which means P will decrease until it reaches K. 

Simple inhibited growth can model the sales of a newly advertised product, in which case 
there exists a maximum limit of the product sales. It can also model the processes of an object 
cooling down to a certain temperature or being dropped from a certain height with air resistance. 
Other cases include the processes of a solution being diluted by another of different concentra-
tion, a capacitor being charged, and certain learning patterns. 

We can use separation of variables to solve equation 4.1: 

dP 
= r (K − P )

dt Z Z 
dP 

= rdt 
K − P 

ln |K − P | = −rt + C 

If P < K , then 
−rt+C −rt K − P = e = C1e (C1 = eC ) 

P = K − C1e 
−rt 

Assume that the initial value P0 occurs at time t = 0, then C1 = K − P0. So we obtain 

P = K − (K − P0) e 
−rt 

If P > K , then 
−rt+C −rt P − K = e = C1e 
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P = K + C1e 
−rt 

In this case C1 = P0 − K, so we still have the same equation: 

P = K − (K − P0) e 
−rt (4.2) 

(Simple inhibited growth solution) 

The fgure below shows some examples of simple inhibited growth. From the graph it can be 
seen that when r > 0, P ! K as t !1, regardless of the choice of P0. 

1 2 3 4
t

2.5
5

7.5
10

12.5
15

17.5
20

P

15 � 2 ��3 t

12 � 5 ��2 t

Figure 4.1: Simple inhibited growth (r > 0) 

However, when r < 0, e−rt ! 1 as t ! 1, therefore P ! ±1, depending on the sign of 
(K − P0). The following fgure shows two such examples. 

0.5 1 1.5 2 2.5 3
t

20
40
60
80

100
120

P

3 � �2 t

7 � 2 �t

Figure 4.2: Simple inhibited growth (r < 0) 

Example 4.1 
After an advertisement for a product has being aired for the frst time on television, it is predicted 
that at most 35% of the population will purchase it. From sales records, 15% of the population 
has already purchased it after 14 days. 

a) Find an appropriate equation to model the sales. 

b) Approximate the number of days it will take for 34% of the population to have purchased 
it. 
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Solution: 
a) Since the advertisement was aired for the frst time, P0 = 0 and equation 4.2 becomes: � � 

P = K 1 − e −rt 

Now substitute the values of K (35), P (15) and t (14) into the above equation: � � 
15 = 35 1 − e −14r 

15 4 
e −14r = 1 − = 

35 7 � � 1 

4 14 
−r e = 

7 

With this information, the equation is complete as ! 
t� �

4 14 

P = 35 1 − 
7 

b) Substituting P = 34 to solve for t, ! 
t� �

4 14 

34 = 35 1 − 
7 

� � t 

1 4 14 

= 
35 7 � � 

ln 
35
1 ln 35 

t = 14 = −14 ˇ 89 days
ln 4

7 
ln 4 − ln 7 

20 40 60 80 100
Days

5
10
15
20
25
30
35
40

Population �%�

35
�

�

���1 � �
4
�����
7

�

t�14
	




���

Figure 4.3: Graph for example 4.1 
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Example 4.2 
According to Newton’s law of cooling, the rate at which an object cools (or warms) is directly 
proportional to the temperature difference between the environment and the object itself. If a pot 
of boiling water (100�C) is left at room temperature (22�C) and after fve minutes the water is 
only 70�C, fnd its temperature after another 5 minutes. 

Solution: 
Substituting the values of P0 (100), K (22), P (70), and t (5) into equation 4.2, 

70 = 22 − (22 − 100) e −5r 

70 − 22 −5r = e 
78 � � 1 

8 5 
−r e = 

13 

Therefore after another 5 minutes, � � 10 

8 5 

T = 22 + 78 ˇ 51�C 
13 

4 8 12 16
Minutes

25

50

75

100

Temperature

�Celsius�

22 � 78 �
8

���������
13

�

t�5

Figure 4.4: Graph for example 4.2 

Example 4.3 
A tank initially holds 100 gallon of brine solution containing 1 lb of salt. At t = 0 another brine 
solution containing 1 lb of salt per gallon is poured into the tank at the rate of 3 gal/min, while 
the well-stirred mixture leaves the tank at the same rate. Find the amount of salt in the tank at 
any time. 

Solution: 
Assume there is Q lb of salt in the tank at time t. The concentration of salt in the solution at time 

Qt is 
100 lb/gal. The rate of salt being added to the tank is (1 lb/gal)(3 gal/min) = 3 lb/min. The 
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rate of salt leaving the tank is ( Q lb/gal)(3 gal/min) = 0.03Q lb/min. So the overall change rate 
100 

of salt concentration is: 
dQ 

= 3 − 0.03Q = 0.03 (100 − Q)
dt Z Z 

dQ 
= 0.03dt 

100 − Q 

− ln |100 − Q| = 0.03t + C 

−0.03t−C100 − Q = e 

−0.03tQ = 100 − C1e (C1 = e−C ) 

Substituting the initial condition Q (0) = 1 into the above equation, we can solve for C1: 

C1 = 100 − 1 = 99 

So the amount of salt in the tank at time t (in minutes) is: 

Q = 100 − 99e −0.03t lbs. 

20 40 60 80 100
Minutes

20

40

60

80

100
Salt �lbs.�

100 � 99 ��0.03 t

Figure 4.5: Graph for example 4.3 

Practice problem set 4 
Solve the following problems using the simple inhibited growth model. 

1. Suppose survey results determined that no matter how long a product is advertised, no 
more than 30% of the population will buy it. After 12 days of advertising, 4% of the 
population has bought it. Approximate the time at which 20% of the population will have 
bought it. 

2. Suppose a student can memorize a maximum of 50 words in a single attempt. After 15 
minutes of memorization, the student can recall 20 words. Find the number of words this 
student can memorize in 30 minutes. 

3. A glass of iced water (3�C) is left in the shade outside (27�C). After 5 minutes, the water’s 
temperature is 7�C. Find the water’s temperature in another ten minutes. 
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4. The resisting force against an object falling in air is proportional to its velocity, so even-
tually any object falling in air will reach a terminal velocity. If somehow a cinder block 
is dropped from rest in the sky, and after fve seconds its velocity is 45 m/s, and after fve 
more seconds its velocity is 80 m/s, fnd its terminal velocity. 

5. Theoretically, if a car tire punctures, it will never equalize it’s pressure with the atmosphere 
because the tire pressure decreases according to simple inhibited growth (decay in this 
case). Assuming the original tire pressure was 35 psi relative to the atmosphere, fnd how 
long it would take for the tire to defate 99.9% if after 5 minutes, the pressure dropped to 
12 psi. 

6. The rate at which salt dissolves in water is directly proportional to the amount that remains 
undissolved. If 5 pounds of salt are placed in a container of water and 1 pound dissolves 
in 5 minutes, fnd how long it will take to dissolve another pound. 

7. Suppose a corpse was discovered in a hotel room at noon and its temperature was 80�F. 
The room was kept at a constant 65�F, and now, after three hours, the temperature of the 
corpse was 72�F. Find the time of death assuming the body was originally at a temperature 
of 98.6�F. 

8. Suppose a certain country’s population has constant relative birth and death rates of 97 
births per thousand people per year and 47 deaths per thousand people per year respec-
tively. Assume also that approximately 30000 people emigrate from the country every 
year. What is the equation that models the population P (t) of the country, where t is in 
years? 

9. An 8 kg weight falls from rest towards the earth. Assuming that the weight is acted upon 
by air resistance, numerically equal to 2 times its speed but with units of newtons. Find 
the velocity of the weight fallen after t seconds. Hint: use Newton’s second law ma = 
Fwt − Fair = mg − 2v or m dv = (mg − 2v) (g = 9.8 m/s2 ).

dt 

10. A tank initially holds 80 gallon of a brine solution containing 2 lb of salt. At t = 0, 
another brine solution containing 1 lb of salt per gallon is poured into the tank at the rate 
of 4 gal/min, while the well-stirred mixture leaves the tank at the same rate. Find the 
amount of salt in the tank at any time. 

11. When a capacitor is being charged, the equation governing the amount of charge on a plate 
is 

dq q
R + = E 

dt C 

where q is the charge (C), R is the resistance of the circuit ( ), and C is the capacitance of 
the capacitor (F), E is the applied voltage (V), and t is time in seconds. Assuming 1.5 V 
is applied across an initially empty 1 mF capacitor in a circuit with resistance 10 k . Find 
the amount of charge on one plate of the capacitor after 1 second. 

12. In a circuit with a 50 k resistor, 9 V is applied across a 500 µF capacitor with an initial 
charge of 1 mC. Find the time at which the charge of the capacitor reaches 3 mC. 
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Chapter 5 

Logistic Growth 

Purpose: To solve the differential equation for the logistic growth model and to apply the solu-
tion. This is only required by the AP Calculus BC exam. 

In the previous two chapters, we have discussed cases in which the rate of change of quantity P is 
either directly proportional to itself (P ), or to its remaining room for growth (K − P ). Logistic 
growth deals with growth rates that are directly proportional to both of these quantities: 

dP 
= r 0P (K − P ) (5.1)

dt 

Here r0 is used because the logistic equation is more commonly written in this form: � � 
dP P 

= rP 1 − (5.2)
dt K 

(Differential equation for logistic growth) 

where r = r0K. In the above equation, K is the same carrying capacity or equilibrium value as 
we discussed before. The constant r is called the intrinsic growth rate, that is, the growth rate 
in the absence of any limiting factors. The logistic equation is mostly used to provide a more 
realistic model for population growth (refer to Appendix A for a detailed derivation). The logis-
tic equation is also frequently used to describe the spreading of diseases or rumors, autocatalytic 
chemical reactions, and other processes. 

The logistic equation shows that if P is small relative to the carrying capacity K, the rate of 
its growth will be close to the constant rate r of the exponential growth model. As P nears K, the 
rate will shrink toward 0, resulting in an S-shaped curve (refer to Figures 5.1 and 5.2). According 
to this model, when P reaches K, the growth rate is 0, and the population will be stable. If P 
were to somehow exceed K, the rate would become negative and the population would decrease 
toward K. 

In order to solve equation 5.2, we separate the variables frst and integrate both sides: Z Z Z 
dP KdP � � = = rdt 

P 1 − P P (K − P )
K 

Separating the integrand by partial fractions we have 

K 1 1 
= + 

P (K − P ) P K − P 

Therefore, Z Z Z 
dP dP 

+ = rdt 
P K − P 

ln |P | − ln |K − P | = rt + C 

23 



���� ����K − P 
ln = −rt − C 

P 

If K−P 
P 

> 0, we have: 
K − P −rt = C1e (C1 

−C )= e
P 

Assuming that P = P0 when t = 0, then 

K − P0
C1 = 

P0 

Therefore 
K − P K − P0 −rt = e 

P P0 

K KP0
P = = 

e−rt −rt 1 + K−P0 P0 + (K − P0) e P0 

If K
P 
−P < 0, we have: 

P − K −rt = C1e (C1 = e−C )
P 

Assume that P = P0 when t = 0, then 

P0 − K 
C1 = 

P0 

P − K 
= 

P0 − K −rt e 
P P0 

This will lead to the same solution as in the previous case. So the fnal solution is: 
KP0

P = −rt 
(5.3)

P0 + (K − P0) e 

(Logistic growth solution) 

Example 5.1 
A population of bacteria in a culture is 50 million, and is growing at a rate of 2 million per hour. 
Assume the carrying capacity is 1 billion. Use one million as a base unit. 

a) Write the logistic differential equation using the data. 

b) Use the model to predict the population in 2 hours, 5 hours, and a day from now. 

c) Use the model to predict when the population will reach half the carrying capacity. 

Solution: 
a) Since the initial population is small compared to the carrying capacity, take the initial 

relative growth rate (
50
2 ) to be an estimate of r. Substitute all the known numbers into 

equation 5.2: � � � � 
dP 2 P P 

= P 1 − = 0.04P 1 − 
dt 50 1000 1000 
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b) Using equation 5.3, 

KP0 (1000) (50) 1000 
P = = = −rt −0.04t −0.04tP0 + (K − P0) e 50 + (1000 − 50) e 1 + 19e 

P (2) ˇ 53.9 million 

P (5) ˇ 60.4 million 

P (24) ˇ 121 million 

c) Set P = 500 to solve for t: 
1000 

500 = −0.04t1 + 19e 
−0.04t19e = 1 

t ˇ 73.6 hours 

50 100 150 200
Hours

200
400
600
800

1000
Population �millions�

1000
����������������������������������������
1 � 19 ��0.04 t

Figure 5.1: Graph for example 5.1 

Example 5.2 
A rumor is spreading in a city of 6000 people. Initially, three people know it; three days later 300 
people have heard about it. Suppose the rumor spreads at a rate proportional to both the number 
of people knowing it and the number of people not knowing it. Find 

a) the number of days for the rumor to spread to 50% of the people, 

b) the approximate number of people knowing it after ten days. 

Solution: 
a) Use equation 5.3 to solve for e−r with the known information P0 = 3, K = 6000 and 

P (3) = 300. 
(6000) (3) 

300 = 
3 + (6000 − 3) e−3r 

3 + (6000 − 3) e −3r = 60 

−3r1999e = 19 
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� � 
19−r e = 

1999 

1 
3 

Now use the value for e−r and P = 3000 to solve for t: 

18000 
3000 = −rt 3 + 5997e 

−rt 3 + 5997e = 6 
−rt 1999e = 1 � � t 

19 3 1 
= 

1999 1999 

t = 
13 ln 

1999 
19ln 

1999 

ˇ 4.9 days 

b) Letting t = 10, use equation 5.3 to solve for P: 

18000 
P (10) = ˇ 5998 people� � 10 

193 + 5997 
1999 

3 

2 4 6 8 10
Days

1000
2000
3000
4000
5000
6000
Population

18000
����������������������������������������������������
3 � 5997 �

19������������1999 �
t�3

Figure 5.2: Graph for example 5.2 

Practice problem set 5 
Solve the following problems. 

1. A certain population has 10,000 people. A disease is spreading through the population at 
a rate proportional to both the infected population and to the unaffected population. If it 
is known that 1,000 were infected two months ago, and 4,000 were infected last month, 
how many should be infected this month? How many months from now will 90% of the 
population be infected? 

2. The number of people that hear a rumor follows logistic growth. In a school of 1500 
students, 5 students start a rumor. After 2 hours, 120 students have heard about the rumor. 
Find the number of students to hear the rumor after one more hour. 
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3. Diseases sometimes spread according to logistic growth. If there were 100 people infected 
one week ago and 280 infected now out of an isolated population of 30,000, fnd the 
number of people that will be infected a week from today. 

4. A salmon population of 1.5 million living off the coast of Alaska grows at a rate of 
0.04P (t) per year, where P (t) is the salmon population at time t. Suppose a group of 
predators moves into the waters of the salmon and starts to kill the salmon at a rate of 
0.0002 [P (t)]2 per year. Calculate how large the salmon population is after 5 years. 

5. The rate of formation of a certain chemical X in the second order chemical reaction 
A + B ! X is known to be governed by the equation 

dx 
= r (a − x) (b − x) (r > 0, a > b > 0)

dt 

where x is the amount (concentration) of chemical X present at time t, and a, b are the 
initial concentrations of A and B, respectively. If x = 1

2 (a + b) when t = 0, fnd x as a 
function of t and determine limt!1 x (t). Hint: use Example 1.4. 

6. A rumor is spreading in a population of 800. Assume that each person meets four people 
each day (who may or may not know the rumor). Initially one person knows the rumor. 

a) When will 200 people know it? 

b) When will 799 people know it? 

Hint: the intrinsic growth rate is r = 4. 

7. It is known that the enzyme pepsin digests protein in the stomach and is formed from 
the cleavage of a short segment of amino acids from its predecessor, pepsinogen. Under 
conditions of extremely low pH (the pH of the stomach is around 2), pepsin can also 
convert pepsinogen into pepsin, thus setting up an autocatalytic reaction. Assuming that 
there is 1.5 M pepsin in the stomach prior to a meal, and 5 M pepsinogen is secreted, fnd 
when 99% of the newly available pepsinogen will be converted, if after 10 seconds, there 
exists 2 M pepsin. Hint: use the logistic equation with P0 = 1.5. 

8. There are two islands, A and B. Initially, there are 1000 people on island A and no one on 
island B. If the rate of emigration is proportional to the difference between the population 
of A and the population of B, and after 5 years there are 250 people on island B and 750 
people on island A, how many years does it take for island B to have 400 people? Hint: is 
this logistic growth? 
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Chapter 6 

Implicit Equation Forms* 

Purpose: To manipulate the previous three growth modeling equations into implicit and sym-
metric forms. The material in this chapter is not covered explicitly on the AP Calculus exams. 

In this chapter we are going to show that all three of the previous growth modeling equations, 
plus a fourth model which is often used to describe certain chemical reactions, can be written 
in highly symmetric and implicit forms1 for easy memorization and comparison. These implicit 
forms can help you better understand the nature of these differential equations and provide you 
certain advantages in calculating the solutions. 

These implicit forms are similar to the exponential growth and decay equation and its solu-
tion: 

dP 
= rP (3.1)

dt 

P = P0e 
rt (3.2) 

Let us frst review the simple inhibited growth equations: 
dP 

= r (K − P ) (4.1)
dt 

P = K − (K − P0) e 
−rt (4.2) 

= −dPIf we make the substitution Z = K − P , then dZ , so equation 4.1 becomes dZ = −rZ.
dt dt dt 

This new equation of Z resembles the form of equation 3.1 except that the rate constant is −r. 
We can directly solve for Z by using equation 3.2 and changing the sign of r: 

Z = Z0e 
−rt 

where Z = K − P and Z0 = K − P0. Substituting these into the above equations of Z, we have: 

d (K − P ) 
= −r (K − P )

dt 
(6.1) 

K − P −rt = (K − P0) e (6.2) 

(Implicit forms of simple inhibited growth) 

Equations 6.1 and 6.2 can be easily converted back to equations 4.1 and 4.2, respectively. 
Next, we work on the logistic growth equations:� � 

dP 
= rP 1 − P 

(5.2)
dt K 

P = 
KP0 (5.3)

P0 + (K − P0) e−rt 

1Professor Kuo Chen, Principal of Olympia Institute in San Francisco, summarized the frst three growth equa-
tions into implicit forms. A portion of this chapter is adapted from his lecture notes. 
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We make the substitution Z = K−P , then Z
P 

= K 
P 
− 1, or P = K , and also dZ 

Z+1 dt 
= − K 

P 2 
dP 
dt 

or 
dP 
dt 

= −P 2 

K 
dZ . Substitute these into equation 5.2 and rearrange: 
dt 

P 2dZ 
� 

P 
� 

− = rP 1 − 
Kdt K � � 

dZ rK P 
= − 1 − 

dt P K 

Substituting P = K 
Z+1 into the above equation, we obtain � � 

dZ 1 
= −r (Z + 1) 1 − 

dt Z + 1 

dZ 
= −rZ 

dt 

Again, we can directly obtain the solution of Z: 

Z = Z0e 
−rt 

K−P K−P0Substituting Z = 
P 

and Z0 = 
P0 

into the above two equations of Z, we have: � � � � 
d K − P K − P 

= −r (6.3)
dt P P 

K − P K − P0 
= e −rt (6.4)

P P0 

(Implicit forms of logistic growth) 

With a little bit of manipulation, the above implicit forms can be converted to equations 5.2 and 
5.3, respectively. 

We can also rewrite the exponential growth and decay equations in implicit forms so that 
they match the other two types of growth equations in format. Let Z = 1 , then dZ = −

P 
1 
2 

dP or
P dt dt 

dP = −P 2 dZ . Substitute these into equation 3.1: 
dt dt 

dZ −P 2 = rP 
dt 

dZ 1 
= −r = −rZ 

dt P 

The solution of Z is: 
Z = Z0e 

−rt 

Since Z = 
P 
1 , Z0 = 

P 
1 
0 
, we have obtained the following: 
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d 1 1 

= −r 
dt P P 

(6.5) 

1 

P 

1 −rt = e 
P0 

(6.6) 

(Implicit forms of exponential growth and decay) 

Now we will study a fourth type of growth modeling equation which is frequently used for 
describing the processes of second order chemical reactions. Because of this we are going to call 
it second order growth in this book. The equation is listed in practice problem 5 of the previous 
chapter and shown here: 

dP 
= r (a − P ) (b − P ) (a 6= b) (6.7)

dt 

This equation states that the rate of change of quantity P is directly proportional to its remaining 
room for growth within the limits a and b. The solution to this equation can be derived easily 
from Example 1.4. With the addition of a rate constant r, the explicit solution is 

(b − a) (P0 − a)
P = a + (6.8)

(P0 − a) + (b − P0) er(b−a)t 

Now we will make a substitution similar to the previous ones to derive the implicit forms of 
equations 6.7 and 6.8. Let Z = 

a
b−
− 

P
P 

, then 

aZ − PZ = b − P 

aZ − b 
P = 

Z − 1 
Therefore, the differentials are: 

dZ − (a − P ) + (b − P ) dP b − a dP 
= = 

dt (a − P )2 dt (a − P )2 dt 

dP (a − P )2 dZ 
= 

dt b − a dt 
Substituting all of these into equation 6.7, we obtain 

2 � �� � 
(a − P ) dZ aZ − b aZ − b 

= r a − b − 
b − a dt Z − 1 Z − 1 

2 � �� � � �� � 2(a − P ) dZ aZ − a − aZ + b bZ − b − aZ + b b − a bZ − aZ Z (b − a) 
= r = r = r 

b − a dt Z − 1 Z − 1 Z − 1 Z − 1 (Z − 1)2 

= a − aZ−b aZ−a−aZ+b b−a 2Since a − P = = , we can easily substitute away the (a − P ) on
Z−1 Z−1 Z−1 

the left side of the above equation: � �2b−a 2 
Z−1 dZ Z (b − a) 

= r 
b − a dt (Z − 1)2 
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1 dZ 
= rZ 

b − a dt 

dZ 
= r (b − a) Z 

dt 

So the solution for Z is: 
r(b−a)tZ = Z0e 

b−P b−P0Substituting Z = and Z0 = into the above equations we have: 
a−P a−P0� � � � 

d b − P b − P 
= r (b − a) (a 6= b) (6.9)

dt a − P a − P � � 
b − P b − P0 r(b−a)t = e (6.10) 
a − P a − P0 

(Implicit forms of second order growth) 

The implicit solution found above can be transformed into the explicit solution with only a few 
manipulations. 

I NOTE 
The implicit model equations derived above can better reveal the nature of these models. For ex-
ample, in the case of r > 0, equation 6.1 shows that the simple inhibited growth is an exponential 
decay of the (K − P ) quantity; equation 6.3 shows that the logistic growth is an exponential de-� � 
cay of the K−P quantity; and equation 6.9 shows that the second order growth is an exponential 

P � � 
growth of the 

a
b−
− 

P
P 

quantity if b > a, and exponential decay if b < a. A summary of all the 
implicit forms is provided in the inside front cover of the book. 

Example 6.1 
Solve Example 5.2a using the implicit solution. 

Solution: 
Using the conditions P0 = 3 and P (3) = 300 in equation 6.4 we have: 

6000 − 300 6000 − 3 −r(3)= e 
300 3 � � 1 

19 3 
−r e = 

1999 

Solving for t when P (t) = 3000: 

6000 − 3000 6000 − 3 −rt = e 
3000 3 � � t 

19 3 

1 = 1999 
1999 
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13 ln 
1999 t = 19 ˇ 4.9 days

ln 
1999 

Example 6.2 
Shown below is an example of a bimolecular nucleophilic substitution of a primary halide: 

NaOH + CH3Br ! CH3OH + NaBr 

This is an example of second order chemical reaction where the concentrations of both reactants 
affect the reaction rate. Letting x represent the concentration of CH3OH, fnd when the reaction 
has reached the half way point, i.e. x reaches 50% of its fnal amount. Assume at time t = 0 
there are 1.0 M NaOH and 1.2 M CH3Br and the reaction rate constant r is known to be 0.02 
M/s. 

Solution: 
A complete reaction would exhaust the lesser quantity (in this case 1.0 M NaOH) and produce 
1 M CH3OH, so the half way point of the reaction is when 0.5 M CH3OH has been produced. 
Using equation 6.10, the implicit solution of second order growth: 

1.2 − 0.5 1.2 − 0 0.02(1.2−1.0)t = e 
1.0 − 0.5 1.0 − 0 

7 0.004t = e 
6 

7 
t = 250 ln ˇ 38.5 s 

6 

Example 6.3 
The following table shows the fsh population in a lake in three consecutive decades. Assume that 
the population grows logistically. Estimate the lake’s maximum capacity for the fsh population. 

Year 1960 1970 1980 
Population (thousands of fsh) 61.3 72.8 84.0 

Solution: 
In this problem we know P0 = 61.3, P1 = 72.8, P2 = 84.0, t0 = 0, t1 = 1, t2 = 2 and want 
to fnd K. We will frst derive a general solution for K using the implicit forms, and then plug in 
the known numbers to solve for K. According to equation 6.4 we have: � � � � 

K − P1 K − P0 K − P2 K − P0−rt1 −rt2= e and = e 
P1 P0 P2 P0 

Divide the frst equation by the second: 

(K − P1) P2 r(t2−t1)= e 
(K − P2) P1 
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Rearranging the frst equation: 
(K − P0) P1 rt1= e 
(K − P1) P0 

Since t2 − t1 = t1 = 1, then ert1 = er(t2−t1), so we have: 

(K − P0) P1 (K − P1) P2 
= 

(K − P1) P0 (K − P2) P1 

Solving the above quadratic equation of K: 

(K − P0) (K − P2) P1
2 = (K − P1)

2 P0P2 � � � � 
P1

2 − P0P2 K2 + 2P0P1P2 − P0P1
2 − P2P1

2 K = 0 

P1 (P1P0 + P1P2 − 2P0P2)
K1 = 0, K2 = 

P 2 
1 − P0P2 

Obviously, K1 = 0 is not a meaningful solution, so the solution is: 

72.8 (72.8 (61.3) + 72.8 (84.0) − 2 (61.3) (84.0)) 
K = ˇ 135.0 thousand 

72.82 − (61.3) (84.0) 

Example 6.4 
The census taken in 1990 and 1994 of a city’s population showed that it had 2.48 million and 2.67 
million residents, respectively. Assume that the maximum capacity of the city is 3.20 million and 
the population increases logistically. Estimate the city’s population in 1978. 

Solution: 
In this problem we know P1 = 2.48, P2 = 2.67, t1 = 12, t2 = 16, K = 3.20, and we want to 
fnd P0. Again we will derive a general solution of P0, and then plug in the known numbers to 
solve for it. From the previous example we have: 

(K − P0) P1 (K − P1) P2rt1 r(t2−t1)= e and = e 
(K − P1) P0 (K − P2) P1 

Solve for er in both equations and equate them: 

1 
t1 t2−t1 

� � � � 1 

(K − P0) P1 (K − P1) P2 
= 

(K − P1) P0 (K − P2) P1 

t1 
t2−t1 

� � 
(K − P0) P1 (K − P1) P2 

= 
(K − P1) P0 (K − P2) P1 

t1 
t2−t1 

� � 
K − P0 K − P1 (K − P1) P2 

= 
P0 P1 (K − P2) P1 
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t1 
t2−t1 

� � 
K K − P1 (K − P1) P2 

= 1 + 
P0 P1 (K − P2) P1 

K 
P0 = t1� � 

t2−t1(K−P1)P21 + K−P1 
P1 (K−P2)P1 

KP1
P0 = t1� � 

t2−t1(K−P1)P2P1 + (K − P1) (K−P2)P1 

So the fnal solution is: 

(3.20) (2.48) 
= ˇ 1.68 millionP0 � � 12 

(3.20−2.48)2.672.48 + (3.20 − 2.48) 
4 

(3.20−2.67)2.48 

I NOTE 
Examples 6.3 and 6.4 show that the implicit equation forms can facilitate the derivation of certain 
parameter expressions, such as K and P0 in the logistic equation. The same method can be 
applied to derive the expressions of a, b and P0 in the second order growth equation, as shown 
by example 6.5. These expressions are summarized in the back cover of this book. 

Example 6.5 
For the second order chemical reaction described by: 

dP 
= r (a − P ) (b − P ) (a =6 b)

dt 

express parameter b in terms of a, P0, P1, P2, t1 and t2, under the condition t2 − t1 = t1. 

Solution: 
According to equation 6.10 we have: � � � � 

b − P1 b − P0 b − P2 b − P0r(b−a)t1 r(b−a)t2= e and = e 
a − P1 a − P0 a − P2 a − P0 

Divide the second equation by the frst: 

(b − P2) (a − P1) r(b−a)(t2−t1)= e 
(b − P1) (a − P2) 

Rearranging the frst equation: 

(b − P1) (a − P0) r(b−a)t1= e 
(a − P1) (b − P0) 
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r(b−a)(t2−t1) r(b−a)t1Since t2 − t1 = t1, then e = e , so we have: 

(b − P2) (a − P1) (b − P1) (a − P0) 
= 

(b − P1) (a − P2) (a − P1) (b − P0) 

(b − P2) (b − P0) (a − P1)
2 = (a − P0) (a − P2) (b − P1)

2 

b(P0P2−P1
2)−P1(P1P0−2P0P2+P1P2)

This is a quadratic equation of a, with solutions: a1 = b and a2 = .
b(P0−2P1+P2)+P1

2−P0P2 

Discard a1 which contradicts the known condition, so the expression for a is: � 
2 
� 

b P0P2 − P1 − P1 (P1P0 − 2P0P2 + P1P2) 
a = 

b (P0 − 2P1 + P2) + P1
2 − P0P2 

The expressions of b and P0 can be derived similarly. 

Practice problem set 6 
Solve the following problems. 

1. Suppose we have the following data for the earth’s population: 
Year 1960 1970 1980 
Population (in billions) 3.01 3.59 4.13 

Assume the population grows logistically. Estimate the earth’s maximum capacity for 
human growth. 

2. Because of limited food and space, a squirrel population can not exceed 1000. It growth at a 
rate proportional both to the existing population and to the attainable additional population. 
If there were 250 squirrels two years ago and the population is 530 now. Estimate the 
squirrel population four years ago. 

3. Two chemicals A, B react together, one molecule of A combining with one of B. Initially 
their concentrations are equal and in two hours they are halved. When will they be one-
quarter of their initial value? 

4. In the hydrogenation of an alkene, a double bond between carbon atoms is converted to a 
single bond by the addition of hydrogen gass with the help of a platinum catalyst. In the 
simple example of ethene, the overall reaction is: 

H H 
H H 

@
C 

�
H 

�
C

@
H 

+ H2 
Pt - H C 

H 

C 

H 

H 

Assuming that initially 0.10 M of ethene and 0.20 M of hydrogen gas are placed together 
under the proper conditions for the reaction to occur, the differential equation governing 
the reaction is 

dx 
= k (0.1 − x) (0.2 − x)

dt 
where x denotes the concentration of the product (ethane, C2H6). Find the reaction con-
stant k, if after 20 minutes the concentration of ethane is 0.060 M. 
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Chapter 7 

Analysis of Logistic Equation* 

Purpose: To explore the various properties of the logistic equation. This chapter is not covered 
on the AP Calculus exams. 

From the previous studies, we have learned that the logistic equation is an S-shaped curve that 
can be used to model population growth and we have used it to solve some real world problems. 
In this chapter we are going to analyze the logistic equation to further understand its properties. 
Although this chapter is not a requirement for the AP Calculus exam, it is useful knowledge of 
the logistic equation and the method used in this chapter can be applied to the analysis of other 
functions. 

Here, the logistic equation and its explicit solution are listed again for reference: � � 
dP 

= rP 1 − P 
(5.2)

dt K 

P = 
KP0 (5.3)−rt P0 + (K − P0) e 

In the following analysis, we will try to learn as much as possible about the logistic equation’s 
properties directly from equation 5.2, and to use equation 5.3 only when necessary. By doing so, 
we can possibly delay or even save the extra effort of having to solve equation 5.2, although in 
this book we have already done so. 

The logistic equation belongs to a class of differential equations, in which the independent 
variable, in this case t, does not appear explicitly. Such equations are called autonomous and� � 
have the form dP = f (P ). For equation 5.2, f (P ) = rP 1 − P , which is a quadratic function 

dt K 

of P . The following fgure shows the curve of f (P ) under the condition r > 0. 

K
�������
2

K
P

rK
���������
4

f�P�

�K�2,rK�4�

0

� 
Figure 7.1: Quadratic function f (P ) = rP with r > 0 

First we notice that the curve of f (P ) in Figure 7.1 has two P intercepts at P = 0 and 
P = K, respectively. These two points correspond to the P values that make dP = f (P ) = 0,

dt 

1 − P 
K 
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which means no change in the P value with respect to t. Therefore P = 0 and P = K are two 
constant solutions of the logistic equation. 

Next we can see that when r > 0, the curve of f (P ) between P = 0 and P = K is above the 
dPP axis, which means 
dt 

> 0, or the solution P (t) is increasing. In Figure 7.1 this is indicated 
by the two arrows pointing to the right, between P = 0 and P = K. If the initial condition 
P0 satisfes 0 < P0 < K, then P (t) will increase towards K, but never reach K.1 So in this 
case the solution curve P (t) is bounded between P = 0 and P = K. Also from Figure 7.1, the 
values of f (P ) are small near the curve’s P intercepts compared to its values near the vertex of 
the parabola. This means that the solution curve P (t) is relatively fat near P = 0 and P = K, 
and it becomes steeper near the vertex where P = K 

2 . 
We can also determine the concavity of the P (t) curve and the location of its point of infec-

tion by fnding d
2P . From dP = f (P ), we apply the chain rule to obtain: 
dt2 dt 

d2P dP 
= f 0 (P ) = f 0 (P ) f (P )

dt2 dt 

The above equation shows that when f (P ) and f 0 (P ) have the same sign, then d
dt 

2P 
2 > 0; oth-

Kerwise d
2P < 0. From Figure 7.1, when 0 < P < , both f (P ) and f 0 (P ) are positive, so
dt2 2 

d2P is positive, or the P (t) curve is concave up. When K < P < K, f (P ) is positive, f 0 (P )
dt2 2 
is negative, so the P (t) curve is concave down. It can also be seen that P (t) has a point of 

Kinfection at P = where d
2P changes sign and the P (t) curve reaches its maximum slope of 

2 dt2 
rK 
4 at the point of infection. 

To fnd the value of t at the point of infection, we can set P = K 
2 in equation 5.3 and solve 

for t: 
K KP0 

= 
2 P0 + (K − P0) e−rt 

2P0 = P0 + (K − P0) e 
−rt 

P0 −rt = e 
K − P0� � 

P0−rt = ln 
K − P0 � � 

1 K 
ti = ln − 1 (7.1) 

r P0 

(Time ti at the point of infection) 

So far we have analyzed the logistic equation under the condition r > 0 and 0 � P0 � K. 
The P (t) curves satisfying this condition are shown in Figure 7.2, between horizontal lines 
P = 0 and P = K. From the fgure it can be seen that if 0 < P0 < K 

2 , the curve of P (t) 

1The fundamental existence and uniqueness theorem states that particular solutions to a differential equation are 
all unique curves that never intersect. In our case, since P = K is a solution, no other solution may intersect this 
line. 
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2 

will intersect the horizontal line P = K 
2 , therefore passing through its point of infection. When 

K < P0 < K, the curve of P (t) does not have a point of infection for t > 0. Under the 

t

K
�������
2

K

P

0

Figure 7.2: Logistic solution curve P = KP0 with r > 0−rt P0+(K−P0)e 

condition r > 0, with P0 > K or P0 < 0, Figure 7.1 indicates that the P (t) curve should be 
decreasing because the curve of f (P ) is below the P axis. When P0 > K, P (t) is concave up 
because the quantities f (P ) and f 0 (P ) are both negative. When P0 < 0, P (t) is concave down 
because f (P ) and f0 (P ) have opposite signs. These curves are also shown in Figure 7.2. 

It is worth mentioning that if P0 > K or P0 < 0, the logistic solution will approach infnite 
at a certain fnite time, or the P (t) curve will have a vertical asymptote. This time t1 can be 
calculated by setting the denominator of equation 5.3 to 0, and solving for t: 

P0 + (K − P0) e 
−rt = 0 � � 

P0 − K 
ln = rt 

P0 � � 
1 K 

t1 = ln 1 − (7.2) 
r P0 

(Time point t1 at which function P (t) approaches infnite) 

In Figure 7.2 the asymptotes of the P (t) curves lie outside the graph’s domain and are not shown. 
When we plot values of t towards positive and negative infnite, these asymptotes will appear, as 
shown in Figure 7.4. 

If r < 0 and 0 < P0 < K we can apply a similar analysis using equations 5.2 and 5.3 to 
conclude that P (t) is decreasing between 0 and K, and its curve is like a horizontally fipped 
‘S’, as shown in Figure 7.3. If the initial condition K < K, the curve of P (t) will pass 

2 < P0 

through its point of infection at P = K 
2 . If 0 < P0 < K 

2 , the curve of P (t) does not have a point 
of infection for t > 0. If P0 > K, the P (t) is increasing and concave up; if P0 < 0, the P (t) 
curve is also increasing but concave down. 
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F
inally, w

e are going to show
 a “full picture” of the logistic solution curves by expanding 

the range of t values suffciently large to include vertical asym
ptotes. F
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s the 

P
 (t) 

curves under the condition 
r

>
 0. T

he three solid lines that intersect the 
P

-axis are under the 
conditions P

0 >
K

, 0 <
P

0 <
K

, and P
0 <

 0, respectively, w
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ith. 

T
he arch at the low

er left corner is the other branch of the 
P

0 >
K

 curve. 
In this case 

t1
 <

 0 because the argum
ent of the logarithm

 in equation 7.2 is less than 1, so the logarithm
 

is negative and r>
 0. A

nd the arch at the right upper corner is the other branch of the 
P

0 <
 0 

curve w
ith t1

 >
 0 because in this case the logarithm

 in equation 7.2 is positive. T
herefore only 

three logistic equation curves are plotted in F
igure 7.4. 
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Figure 7.5: Logistic solution P = KP0 with r < 0
P0+(K−P0)e−rt 

Example 7.1 
A contagious disease begins to spread in a community of 5000 people. Initially one person has 
it. After 20 days the spread of the disease appears to slow down. Assume the disease spreads 
according to the logistic model. Find how many people will be infected after 25 days. 

Solution: 
According to the given condition, we have K = 5000, P0 = 1 and r > 0, so the function P (t) is 
an S-shaped curve with a point of infection at K = 2500. Since dP reaches its maximum value 

2 dt 

on the 20th day, it indicates that t = 20 is at the point of infection, so we have P (20) = K 
2 = 

2500. Substitute these values into equation 5.3: 

5000 
2500 = 

1 + (5000 − 1) e−20r 

� � 1 

1 20 
−r e = 

4999 

After 25 days, 
5000 

P = 
1 + (5000 − 1) e−25r 

5000 
P = ˇ 4469 people� � 25 

1 201 + (5000 − 1) 
4999 

40 



I-
10 20 30 40

t

1000

2000

3000

4000

5000
P

5000
������������������������������������������������������������
1 � 4999 �

1�������������4999 �
t�20

Figure 7.6: Graph for Example 7.1 

Practice problem set 7 
Solve the following problems: 

1. A contagious disease begins to spread in a community of 2000 people. This disease spreads 
by contact and once a person has it, he/she will immediately and forever infect others. 
Initially one person has it, and the spread of the epidemic appears to lessen after two 
weeks. Find how many people have had the disease at any time t (in weeks). 

2. An epidemic of a plague spreads through a town of 50000. Originally one person had it, 
and now after two weeks 20 people have it. 

a) When will the spread be most rapid? 

b) When will 2000 people have it? 

3. In a second order chemical reaction 2A + 3B ! P , 2 molecules of A combine with 3 
molecules of B to form one molecule of P . Assume that the rate of the reaction is directly 
proportional to the concentrations of A and B, and initially chemical P does not exist. Let 
x be the concentration of P at time t, a and b be the initial concentrations of A and B, 
respectively. Express the reaction constant k in terms of x, t, a and b. 

4. Apply the method in this chapter to analyze the second order growth equation. Use equa-
tion 6.7 as much as possible, and equation 6.8 only when necessary. Draw a fgure similar 
to Figure 7.1 to help the analysis. 
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Chapter 8 

The Hyperbolic Forms* 

Purpose: To explore the relationships between the logistic solution and hyperbolic functions. 
This chapter is not a requirement of the AP Calculus exam. 

Although the AP Calculus Exam does not cover hyperbolic functions, this chapter can help you 
better understand the nature of the logistic equation if you are familiar with the hyperbolic tangent 
(tanh) and cotangent (coth) functions. Figure 8.1 shows the two hyperbolic functions and their 
graphs. 

−x −xex − e ex + e 
tanh x = and coth x = −x −xex + e ex − e 

These curves clearly bear a similarity to the shape of the logistic solution curves shown in 

�4 �2 2 4
t

�4
�3
�2
�1

1
2
3
4

P

coth t

tanh t

Figure 8.1: Hyperbolic tangent and cotangent curves. 

the previous chapter. In fact, the logistic solution is simply a transformation of one of the two 
hyperbolic functions under different conditions.1 

The tanh function resembles the logistic function when 0 < P0 < K. From the previous 
discussions we already know that under this condition the logistic equation is an S-shaped curve � � � � 

1 K Kwith a point of infection at (ti, Pi) = ln − 1 , , where Pi denotes the value of func-
r P0 2 

tion P at the point of infection. Let us defne a new function P˝ (t), which has a curve identical 
to the logistic equation curve except that its point of infection is at the origin. In other words, � � 
P˝ (t) is the logistic function P (t) translated by t = −1 ln K − 1 and P = −K . So we have: 

r P0 2 

P˝ (t) = P (t + ti) − Pi (8.1) 

P (t) = P˝ (t − ti) + Pi (8.2) 

Apply equation 8.1 to equation 5.3: 

KP0 K 
P = = � � 

P0 + (K − P0) e−rt K −rt 1 + − 1 e
P0 

1Bradley, D. M. "Verhulst’s logistic curve," The College Mathematics Journal, 32 (2), 2001, pp. 94-98. 
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P˝ = � K� − K 

K −r(t+ti) 21 + − 1 e
P0 

K K 
P˝ = � � � � �� − 

1 K 
K −r t+ 

r ln 
P0 
−1 2

1 + − 1 e
P0 

K K 
P˝ = � � � � − 

K 
K −rt−ln −1 2

1 + − 1 e P0 
P0 � � 

− ln x KSince xe = 1, letting x = 
P0 
− 1 gives 

K K 
P˝ = −−rt 1 + e 2 

K − Ke−rt 

P˝ = −rt)2 (1 + e � � 
K 1 − e−rt 

P˝ = −rt 2 1 + e 
−x −2x

Recall that tanh x = xx−e = 1−e , so−x −2xxx+e 1+e � � 
K 1 

P˝ = tanh rt 
2 2 

Apply equation 8.2 to the above equation: � � 
K 1 K 

P = tanh r (t − ti) + (8.3)
2 2 2 

(Hyperbolic form of logistic equation when 0 < P0 < K) 

Figure 8.2 shows the relationship between the tanh function and the logistic function under 
the conditions r > 0 and 0 < P0 < K. The dashed line is the logistic function curve and the 
solid line is the tanh function curve. 

Similarly, the coth function resembles the logistic function P (t) when P0 > K or P0 < 0. 
Under these conditions we defne: 

K 
P˝ (t) = P (t + t1) − (8.4)

2 

K 
P (t) = P˝ (t − t1) + (8.5)

2 

Recall that t1 is the time when function P approaches infnite. Apply equation 8.4 to equation 
5.3: 

P˝ = � K� − K 

K 2e−r(t+t1)1 + − 1
P0 
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Figure 8.2: Relationship between tanh function and logistic function. 

P˝ = 
1 + 

� 
K 
P0 

K� � 
1−r t+ 
r− 1 e 

� �� − 
ln 1− K 

P0 

K 

2 

K K 
P˝ = − −rt 1 − e 2� � 

K + Ke−rt −rt K 1 + e
P˝ = −rt)2 (1 − e

= 
2 −rt 1 − e

Because coth x = 
−xex+e

ex−e−x = 
−2x1+e
−2x , so

1−e � � 
K 1 

P˝ = 
2 

coth rt 
2 

Apply equation 8.5 to the equation above to obtain: � � 
K 1 K 

P = coth r (t − t1) + (8.6)
2 2 2 

(Hyperbolic form of logistic equation when P0 < 0 or P0 > K) 

Figure 8.3 shows the relationship between the coth function and the logistic function under 
the condition r > 0 and P0 > K. The dashed line is the logistic function curve and the solid line 
is the coth function curve. 
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Figure 8.3: Relationship between coth function and logistic function. 

Example 8.1 
Express the logistic function of Example 5.1 in hyperbolic form. 

Solution: 
The logistic function is P = 1000 with P0 = 50, K = 1000 and r = 0.04.−0.04t1+19e 

Since 0 < P0 < K, � � � � 
1 K 1 1000 

ti = ln − 1 = ln − 1 = 25 ln(19) 
r P0 0.04 50 

So the hyperbolic form of the solution is: � � � � � � � � 
t − ti t − 25 ln (19) 

P (t) = 500 tanh + 1 = 500 tanh + 1 
50 50 
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Chapter 9 

Slope Fields 

Purpose: To graphically express a differential equation using slope felds. This chapter is re-
quired by the AP Calculus BC exam and will be covered by the AB exam starting in 2004. 

Slope felds are a way to visualize a differential equation. It is simply a graph that shows the 
slopes at points on the coordinate plane for a differential equation. Below is an example: 

�4 �2 2 4

�4
�3
�2
�1

1
2
3
4

Figure 9.1: Slope feld for dy = xy
dx 

2 

2The specifc solution, y = 
2
1 e 

x 
for the initial condition (0,1), has been superimposed as the 

solid line on the feld. Notice how the feld’s lines match up with the solution’s curve. This is 
why slope felds are useful: they can show the shapes of the possible solutions (just follow the 
and connect the slope lines), as well as predict other values on the solution. Even though most 
graphing calculators can plot slope felds, you should know how to make them by hand. The AP 
test requires that you be able to identify what the slope feld of a function looks like, without a 
graphing calculator. Making a slope feld involves evaluating the differential equation at each 
point. 

Example 9.1 
Draw the slope feld for the differential equation dy = xy2 .

dx 

Solution: 
Start off by making some observations about what the feld should look like: 

• On the axes, the slope is zero. 

• Farther from the origin, the slopes are larger. 

• In frst and fourth quadrants, the slopes are positive. 

• In the second and third quadrants, the slopes are negative. 
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Making observations like this will help you identify a slope feld for a function. 
Next, make a table of slope values, but for simpler functions like the one given, this can 

usually be done in your head. Only a few slope values are shown here: 
x y slope 
-2 -2 2(−2) (−2) = −8 

-2 -1 2(−2) (−1) = −2 

-2 1 2(−2) (1) = −2 

-2 2 2(−2) (2) = 8 

-1 -2 2(−1) (−2) = −4 

-1 -1 2(−1) (−1) = −1 

-1 1 2(−1) (1) = −1 
Now, you are ready to graph the feld. Draw a short line segment with the slope you calculated 

above for each of the points. The feld should look something like this: 

�4 �2 2 4

�4

�2

2

4

Figure 9.2: Slope feld for dy = xy2 
dx 

Example 9.2 
Match the following differential equations with their respective slope felds. 

a) dy b) dy 2 c) dy d) dy p
= x + y = x − y = x (1 − y) = −x y

dx dx dx dx 

1) �4 �2 2 4

�4

�2

2

2) �4 �2 2 4

�4

�2

2

3) �4 �2 2 4

�4

�2

2

4) �4 �2 2 4

�4

�2

2
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Solution: 
Since graph (3) is the only graph that does not exist below the x-axis, therefore, it must go with 
equation (d), which has the square root. Graph (1) appears to have zero slope at y = 1, and at 
x = 0. The only equation to meet these criteria is equation (c). Graph (2) appears to have zero 
slope along a diagonal y = −x. Equation (a) meets the criterion in this case. The only one left is 
graph (4) and equation (b), which makes sense because the graph seems to have zero slope alongp
y = ± x. The answers are 1c, 2a, 3d, 4b. 
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Chapter 10 

Euler’s Method 

Purpose: To fnd numerical approximations to solutions of a differential equation. This chapter 
is required only by the AP Calculus BC exam. 

Not all differential equations can be solved explicitly to produce an exact solution. Euler’s 
method is used to approximate a solution to a differential equation if an initial condition is known. 
It is based on increments and differentials; if the slope at one point is known, a neighboring point 
can be approximated by extending the slope line to a new x-coordinate: 

0.5 1 1.5 2 2.5 3

1

2

3

4

Figure 10.1: Comparison of Euler’s method to exact solution. 

The differential equation here is dy = 2−x, with the particular solution 1 x2 +2x+1 graphed
dx 2 

with a dotted line. To draw the approximation lines, start at (0, 1) and draw a line segment with 
the slope at (0, 1); it extends out to (0.5, 2). This process is repeated, each time extending the line 
0.5 units towards the right (and using the slope at the previously calculated point) until (3, 3.25) is 
reached. That is the approximate solution of the differential equation, given the initial condition 
(0, 1), and using a step size of 0.5. Below is the formal defnition: 

If dy 
dx 

= f (x, y), and you are given a point (x1, y1), then the next approximation is: 

(x1 + �x, y1 + �x · f (x1, y1)) (10.1) 

(Euler’s method) 

I NOTE 
�x (sometimes written h) is called the step size or increment; the smaller the step size, the more 
accurate the approximation. The step size can also be negative. 

Example 10.1 
Approximate the solution to the differential equation dy = y ln x at x = 2 using Euler’s method,

dx 

given the initial condition (1, 1) and using a step size of 0.25. 
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Solution: 
It is often easiest to construct a table like this: 

Old x Old y f(x, y) New x New y = Old y + 0.25 · f(Old x, Old y) 
1 1 0 1.25 1 
1.25 1 0.2231 1.5 1.0558 
1.5 1.0558 0.4281 1.75 1.1628 
1.75 1.1628 0.6507 2 1.3255 

The solution is (2, 1.3255). Seeing as how diffcult the above problem was to do, even with 
only 4 iterations, methods for doing Euler’s method on a calculator are provided later on in the 
chapter. On the AP test, you may not be able to use a calculator to do Euler’s method problems. 

0 1 1.5 2 2.5

0.6

0.8

1

1.2

1.4

Figure 10.2: Euler’s method approximation for dy = x ln y from x = 1 to x = 2
dx 

Example 10.2 
Find the difference between the value found with Euler’s method and the actual value at x = 0.5 
for the differential equation dy = −y cos (8x) starting at (0, 1) using a step size of 0.1. 

dx 

Solution: 
Old x Old y f(x, y) New x New y = Old y + 0.25 · f(Old x, Old y) 
0 1 -1 0.1 0.9 
0.1 0.9 -0.6270 0.2 0.8373 
0.2 0.8373 0.0244 0.3 0.8397 
0.3 0.8397 0.6192 0.4 0.9016 
0.4 0.9016 0.9001 0.5 0.9916 

The solution using Euler’s method is (0.5, 0.9916). To fnd the actual solution, we must solve 
the differential equation. 

dy 
= −y cos (8x)

dxZ Z 
dy 

= − cos (8x) dx 
y 

1 
ln |y| = − sin (8x) + C 

8 
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− 1 
8

sin(8x)+C y = e 

Using the initial condition C = 0, 
− 1 

8
sin(8x)y = e 

And the actual value is e−
1 
8

sin(8(0.5)) ˇ 1.0992. The difference is 1.0992 − 0.9916 = 0.1076. 

0.1 0.2 0.3 0.4 0.5

0.8
0.85
0.9

0.95

1.05
1.1

1.15

�y

Figure 10.3: Euler’s method approximation and exact solution for dy = −y cos (8x)
dx 

I NOTE 
Euler’s method will over underestimate if a curve is generally concave up (like above) and over 
estimate if a curve is generally concave down. For curves that change concavity, it is hard to tell 
whether the approximation is too large or small. 

Using a calculator 
It is a little known fact that the TI-86 and TI-89 have built in Euler’s method capabilities when 
graphing differential equations. On the TI-86, set the graph mode to DifEq in the MODE menu. 
Now enter the differential equation (use t for x) and Q1 for y). You may actually graph more 
than one differential equation at a time, using Q2, Q3, etc. for the other equations, but the plot 
window would just get messy. Set the window and initial conditions in the WIND and INITC 
menus but be sure to set tStep to the step size, tMin to the beginning x value and tMax to the 
fnal x value. Press MORE to see the second set of menus and select FORMT. Here, select 
Euler instead of the default RK on the ffth line; this tells the calculator to use Euler’s method 
when approximating the solutions. Now select GRAPH and the differential equation feld and 
the approximate solution curve are plotted. Trace the curve (TRACE in the second set of menus) 
and the coordinates are shown at the bottom of the screen for each iteration of Euler’s method. 

On the TI-89, set the graph mode to 6:DIFF EQUATIONS. Enter the differential equation in 
the Y= editor (use t for x and y1 for y) as well as the initial y value in the line below it where it 
says yi1=. Again, you may graph multiple differential equations, but it is not recommended. In 
the Tools menu (F1), select 9:Format... and change Solution Method from RK to EULER. In 
the WINDOW editor set tstep to the step size, t0 to the beginning x value and tmax to the fnal 
x value (of course, also change the window bounds to ft the solution curve). Graph the equation 
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and trace (F3 menu) the equation; at the bottom of the screen are xc and yc, the coordinates of 
each iteration. 

The TI-82/83, and 83+ do not have built in Euler’s method capabilities, however many pro-
grams already exist and are freely available online for downloading or typing into calculators. 
No program will be provided here because each type of calculator requires a different program. 

Practice problem set 8 
Solve these problems by hand and then try them using the calculator if possible. 

y1. Given that the solution to the differential equation dy = + x passes through the point 
dx x 

(1, 2), approximate y when x = 0.5 using h = −0.25. 

2. Using Euler’s method with a step size of 1, estimate the population of a bacterial colony 
that follows the growth equation dP = 2.3P at t = 3 if currently it contains 100 bacteria. 

dt 

3. To see how wrong Euler’s method can be, fnd the error between the approximation and 
the actual value for the previous problem (include the sign). 
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Appendix A 

Derivation of the Logistic Equation1 

Motivated by Thomas Malthus’ “An Essay on the Principle of Population” (1798), which pre-
dicted unlimited population growth, Pierre François Verhulst published his “logistique” equation 
(1838) to describe the inhibited growth of a population limited by a carrying capacity. Here we 
will discuss the logic behind the equation. � � 

dP 1 − PThe differential form of the logistic equation, 
dt 

= rP 
K 

, is frequently used for 
modeling population growth. It is believed that a population, P , will grow at a rate which is 
somehow dependent upon its size, which would lead us to conclude the differential equation for 
exponential growth, dP = rP , where r is the difference between the birth rate, b, and the death 

dt 

rate, d, and t is a unit of time. If r is positive, the population will unrealistically grow to an 
unlimited size. Populations do follow this type of growth patter for short periods of time, but this� � 
pattern is unrealistic for the long term. The factor 1 − 

K
P is added in the equation to produce 

inhibited growth. 
Since the resources of a population are generally limited, it is reasonable to assume that as 

its density increases and it approaches the carrying capacity of its environment, the birth rate 
will decline and the death rate increase. Thus we could redefne the birth rate as b = b0 − kbP , 
where b0 is the initial growth rate and kb is the rate at which the birth rate declines as N grows. 
Similarly, the death rate could be redefned as d = d0 + kdP , where d0 is the initial death rate 
and kd is the rate at which the death rate increases as P grows. In other words, the birth and 
death rates can be interpreted as linearly related to the size of the population. P will stabilize, or 
reach a fxed point, if b = d, or b0 − kbP = d0 + kdP . Solving for P , we get a carrying capacity 

b0−d0 rK = . Let r = b0 − d0. Then kb + kd = . We will put this relationship aside for future 
kb+kd P 

reference. 
By modify the differential equation for exponential grow, using the rate of growth in terms 

of our revised ideas about b and d, 

dP 
= rP = (b − d) P 

dt 
= [(b0 − kbP ) − (d0 + kdP )] P 

= [(b0 − d0) − (kb + kd) P ] P 
r 

= [r − (kb + kd) P ] P Let (kb + kd) = (from an earlier calculation) 
K� � � � 

P P 
= r − r P = rP 1 − 

K K 

1Wilson, E. O., and W. H. Bossert. 1971. A Primer of Population Biology. Sinauer Assoc., Inc., Sunderland, 
MA. 
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Free Response Problems 
1. The radiation R (t) in a substance decreases at a rate proportional to the amount present, or 

dR 
dt 

= kR where k is a constant and t is measured in years. The initial amount of radiation 
is 7200 rads. After three years the radiation has declined to 450 rads. 

(a) Express R as a function of t. 

(b) Find when the radiation will drop below 30 rads. 

(c) Find the half-life of this substance. 

2. The growth of a bacterial colony in a petri dish is modeled by this differential equation: 

dP 
= 0.04P (100 − P )

dt 

where P � 100 is measured in thousands of cells and t � 0 is measured in days. 

(a) Find the general solution to the differential equation. 

(b) If P = 10 when t = 0, fnd the particular solution to the differential equation. 

(c) Find how many people will eventually have the disease. Justify your answer. 

3. The slope feld for the differential equation dy = y − 3 (defned for all real numbers x) is 
dx 

shown below in the window −5 < x < 5 and −1 < y < 6. 

�4 �2 2 4

2

4

6

(a) Find the general solution to the differential equation in terms of an arbitrary constant 
C. 

(b) Find the particular solution that contains the point (0, 1). 

(c) The graph above shows that some solutions approach +1 as x ! 1 and others 
approach −1 as x ! 1. Determine the C values that cause lim y = +1t) and 

x!1 
show your reasoning. 
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Answers to Practice Problems 
Practice Problem Set 1 (Chapter 1) 

1. y = C (1 + x2) 

2 2 x+13. (x − 1) − (y + 1) + 2 ln 
y−1 = C 

5. t3y2 = Cey 

7. y2 + 2 ln |y| = x2 − 4x + 5 

(x−3)2(x+1) 9. y = ln 
9 

Practice Problem Set 2 (Chapter 2) 

1. y = x + Cxy 

3. x3 − 2y3 = Cx 

5. (x + 3y) − 9 ln |x + 3y| = 7x + C 

7. y = 2 (x − 2)3 + C (x − 2) 

cos x9. y sin x + 5e = 1 

Practice Problem Set 3 (Chapter 3)� � 50 

1. 120 
2
1 74 ˇ 75 grams 

3. 400 (2)5 = 12800 cells 

5. ln 2/0.0525 ˇ 13.2 years 
20 
37. 20 (0.7) ˇ 1.86 candelas 

5 ln 2 9. ˇ 3.78 (In the fourth year) 
ln 2.5 

11. 1.15 seconds 

Practice Problem Set 4 (Chapter 4) 
12 ln 1

31. ˇ 92 days
ln 13 

15 � � 10 

3. 27 − 20 
6
5 5 ˇ 13�C 

5 ln 0.001 5. ˇ 32.3 minutes
ln 12−ln 35� �� � � 

98.6−65 77. 3 ln ln ˇ −6.17 hours
72−65 15 

Therefore, 6.17 hours ago from now is 
approximately 8:49 AM 

9. v (t) = 4 (1 − e−2.45t) m/s 

11. 143 µC 

2 22. y 
3 

= 9x 
1 

+ C 

4. sin2 y = C x−1 
x+1 

6. sin x + y2 = 1 

x8. 2e 
2 
+ y4 − 4y = 10 

Caeax

10. If y > a or y < 0, y = ;
Ceax−1 

Caeax

If 0 < y < a, y = 
Ceax+1 

2. y = x − C
x 

arcsin y 
x4. Cx = e 

6. y = 3 + Ce−x2 

−x 2 − 18. y = 2e 
2 
+ x 

10. y = 2x2 cos x + Cx cos x 

� 
ln 132. 3ln 25 ˇ 2.54 hours

13 6 

10 ln 0.54. ˇ 6.08 grams
ln 0.32� � 3400 

6. 100 1
2 

5730 ˇ 66.3 % 

8. ln 2/0.05 ˇ 13.9 (In the 14th year) 

−t/20 10. 2.5 = 5e , t ˇ 13.9 minutes 

−0.4t12. I = 10e , I ˇ 0.15A 

� �� � 30 

2. 50 1 − 3
5 

15 = 32 words 

4. 45 = K (1 − e−5r), 
80 = K (1 − e−10r), 202.5 m/s 

5 ln 0.756. ˇ 6.45 minutes
ln 0.8 

dP8. 
dt 

= (0.097 − 0.047) P − 30000 

2010. Q (t) = 80 − 78e− 
t 

lbs. 

12. 21.2 seconds 
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Practice Problem Set 5 (Chapter 5) 
10000 1. P (t) = ; P(2) = 8000;

1+9(1/6)t 

t ˇ 0.45 months 

3000000 3. ˇ 776 people14 
7100+(29900)( 743 

2093 ) 

5. x = b + a−b ; lim x (t) = b
1+er(a−b)t 

t!+1 
(6.5)(1.5) −r 

107. 2 = ; e = 0.675 
1 

1.5+(6.5−1.5)e−10r 

(6.5)(1.5)1.5 + (5) (0.99) = ,t 
1.5+(6.5−1.5)0.675 10 

t ˇ 154 s 

Practice Problem Set 6 (Chapter 6) 

1. ˇ 6.05 billion 

3. dx = r (a − x)2;
dt 

r = 0.5, in six hours 

Practice Problem Set 7 (Chapter 7)� �1/2−r 1 2000 1. e = 
1999 , P (t) = t 

1 21+1999( 1999 ) 
13. ln b(a−2x) 

t(3a−2b) a(b−3x) 

Practice Problem Set 8 (Chapter 10) 

1. 31 ˇ 0.6458 
48 

3. P = 100e2.3(3) ˇ 99227 bacteria 
(Difference of 3594 − 99227 = −95633) 

2. 1500 ˇ 203 students3 
21+299( 23 

598 ) 

dP dP4. = 0.04P − 0.0002P 2 or = 
dt � � dt 

P0.04P 1 − 
200 ; P (5) ˇ 1.83 million 

6. a) 1.40 days; b) 3.34 days � � 1 
dP −r 1 108. 
dt 

= r (1000 − 2P ); e = 
2 , 

t ˇ 11.6 years 

2. ˇ 90 squirrels 

0.2−0.06 0.2−0 (0.2−0.1)20k;4. = e
0.1−0.06 0.1−0 

k ˇ 0.28 mol 
L·min 

2. a) in 5.22 weeks; b) in 3.10 weeks 

4. Const. solutions at P = a and P = b. If 
P0 < a, func. increasing, concave down. 
If a < P0 < a+

2 
b , func. decreasing, con-

cave up. If a+
2 

b < P0 < b, func. de-
creasing, concave down. If P0 > b, func. 
increasing, concave up. 

2. ˇ 3594 bacteria 
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Answers to Free Response Questions 
Note: Actual free response problems on the AP Exam are worth 9 points each. The point-value 
breakdowns given here are only approximates of what they would really be on the exam. 

1. The radiation R (t) in a substance decreases at a rate proportional to the amount present, or 
dR = kR where k is a constant and t is measured in years. The initial amount of radiation 
dt 

is 7200 rads. After three years the radiation has declined to 450 rads. 

(a) Express R as a function of t. 
1 point for separating the variables. 

dR = kR 
dtR R 

dR = kdt 
R 

1 point for antiderivatives. 

ln |R| = kt + C 

CR = Aekt where A = e

1 point for the constant of integration. 

1 point for obtaining the initial condi-
7200 = Ae0; A = 7200 tion and the k value (must be to three 

3k450 = 7200e decimal places) 

k ˇ −0.924 Total: 4 points 
−0.924tR = 7200e

(b) Find when the radiation will drop be-
low 30 rads. 2 points for the correct answer. 

−0.924t30 = 7200e -1 if the k value is not consistent with 
1 −0.924t= e

240 
that in part a. 

ln 240 t = ˇ 5.931 years
0.924 -1 if the answer is not to three deci-

mal places. 

Total: 2 points 

(c) Find the half-life of this substance. 
−0.924tR = 7200e

−0.924t 1 −0.924t3600 = 7200e or = e
2 

ln 2 t = ˇ 0.750 years
0.924 

1 point for setting up the equation 
(2nd line, either is correct). 

2 points for the rest of the solution. 

-1 if the answer is not to three deci-
mal places. 

Total: 3 points 
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2. The growth of a bacterial colony in a petri dish is modeled by this differential equation: 

dP 
= 0.04P (100 − P )

dt 

where P � 100 is measured in thousands of cells and t � 0 is measured in days. 

(a) Find the general solution to the dif-
ferential equation. 
dP = 0.04P (100 − P )
dt 

dP = 0.04dt
P (100−P ) 

A B 1+ = ;
P 100−P P (100−P ) 

1A = , B = − 1 
100 100 

1 1ln |P | − ln |100 − P | = 
100 100 
0.04t + C 

100 ln − 1 = −4t − 100C
P 

100 P = −100C −4t1+e e

100 −100CP = 
1+Ae−4t , where A = e

1 point for separating the variables. 

1 point for antiderivatives. 

1 point for the partial fraction decom-
position. 

1 point for the constant of integration. 

1 point for solving for P. 

Total: 5 points 

2/5 if there is no constant of integra-
tion. 

0/5 if there is no separation of vari-
ables. 

(b) If P = 10 when t = 0, fnd the 
particular solution to the differential 2 points for the correct answer. 

equation. 
10010 = ; A = 9

1+Ae0 

100 so P = −4t1+9e

Total: 2 points 

(c) Find how many people will eventu-
ally have the disease. Justify your an- 1 point for the explanation 

swer. 

The number of people that will even-
1 point for the limit 

tually have the disease is the limit of 
P as t goes to infnite: 

100 lim −4t = 100 people
1+9et!1 

Total: 2 points 
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3. The slope feld for the differential equation dy = y − 3 (defned for all real numbers x) is 
dx 

shown below in the window −5 < x < 5 and −1 < y < 6. 

�4 �2 2 4

2

4

6

(a) Find the general solution to the dif-
ferential equation in terms of an arbi- 1 point for separating the variables. 

trary constant C. 1 point for antiderivatives. 
dy = y − 3
dx 

dy = dx 
y−3 

1 point for the constant of integration. 

ln (y − 3) = x + C 
1 point for solving for y.. 

y = ex+C + 3 

Cy = e ex + 3 

Total: 4 points 

(b) Find the particular solution that con-
tains the point (0, 1). 

C1 = e e0 + 3 

Ce = −2 

y = −2ex + 3 

Total: 2 points 

(c) The graph above shows that some so-
lutions approach +1 as x ! 1 and 2 points for an explanation. 

others approach −1 as x ! 1. 
Determine the C values that cause 

1 point for a correct condition on C. 

lim y = +1 and show your reason-
x!1 
ing. 

C xIn order for lim e e + 3 = +1, 
x!1 

the coeffcient eC must be positive so 
then C can be any real number. 

Total: 3 points 
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Editor’s Notes 
This is not an ordinary AP test preparation book. It substantially enhances the reader’s knowledge 
of differential equations modeling real world growth processes. The book makes its unique 
contributions on the following topics: 

1. It shows that four types of growth modeling differential equations, from the simple ex-
ponential growth and decay to the more complicated second order growth, can all be ex-
pressed in implicit, highly symmetric forms so that their common nature is revealed. 

2. These implicit solution forms can be used to derive parameter expressions of the logistic 
and second order growth equations that are diffcult to obtain using the more conventional 
explicit solutions. 

3. The implicit solution forms in some cases provide a faster way to solve the more compli-
cated logistic and second order growth problems. This book has included specifc examples 
and practice problems to demonstrate this approach. 

4. It derives many of the properties of the logistic solution from the original logistic equation, 
not from its solution function. Although this approach is not novel it certainly provides 
high school students an alternative method of analyzing an algebraic function similar to 
the logistic solution. 

5. It proves by simple function curve translation that the logistic solution is just another form 
of the hyperbolic tangent and cotangent functions under different initial conditions. 

This book was used at Olympia Institute as part of the test preparation curriculum for the 
AP Calculus and AP Physics Exams. It has been well received by the students. I recommend 
this book to students who are interested in gaining a more insightful knowledge of these growth 
modeling differential equations, especially the logistic equation. This book can also be useful to 
teachers, mathematicians, and engineers working in the related areas. 

Professor Kuo Chen, Principal of Olympia Institute 
950 Clement Street, San Francisco, CA 94118 

About the Author 
The author of this book, Victor Liu, has been a student at Olympia Institute since his sophomore 
year. Victor was born in Mountain View, California and has resided in the San Francisco Bay 
area all his life. He is a senior in the graduating class of 2003 at Monta Vista High School in 
Cupertino. He started taking the AP calculus and Honors physics courses in his sophomore year 
and received 5’s on the AP Calculus BC and AB, Physics C (Mechanics and Electrical-Magnetic) 
exams in that year. In his junior year he received 5’s on the AP Statistics, Computer Science, 
English Language and Chemistry exams. He maintains a 4.0 GPA in his sophomore and ju-
nior years. His interests include mathematics, physics, computer programming and networking, 
swimming, table tennis and music. He plans to study electrical engineering and computer sci-
ence in college. 
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